Image
 Data Driven Decision Making B.Com Business Analytics Sem I Questions (6-10) : Python   Q6. Write a program to assign three values to the variables a, b and c            and perform the operations addition, multiplication, ((a+b)+c),          ( a-(b+c)), (a*(b+c)), (a + (b*c)), (a*(b-c)).           #Write a program to assign three values to the variables a, b and c     and perform the operations addition, multiplication, ((a+b)+c),   (a-(b+c)), (a*(b+c)), (a + (b*c)), (a*(b-c)).    a =  int ( input ( 'Enter a number of your choice' ))           b=  int ( input ( 'Enter a number of your choice' ))      c=...

 

Computer Lab - Practical Question Bank

FACULTY OF COMMERCE,

OSMANIA UNIVERSITY

------------------------------------------------------------------------------------------

B.Com (Business Analytics) III Semester

Data Analytics Modeling

Time: 60 Minutes                                                                    Record : 10

                                                                                               Skill Test : 15

                                                                                               Viva - Voce : 10

                                                                                               Total Marks : 35

                                            MS Excel or Power query

                                                Table for 1-10 Questions

Deptname – EmpID

Employee Name

Gender

Date of Birth

Date of Hiring

Salary

D – 45001

     anne       hardy

F

03-01-1977

01-06-2006

45,000.00

HR – 45001

RAM            Sastry

m

23-04-1999

01-02-2007

25,000.00

S – 45203

            syam mohan

m

30-11-1987

06-08-2005

24,000.00

O – 45301

riya            SHAarma

f

29-05-1993

13-01-2010

22,000.00

HR – 45005

John

Doe

M

25-09-1997

28-10-2014

20,001.00

HR – 45010

jack

McGinnis

M

04-06-1988

21-09-2012

15,800.00

S – 45210

         soe green

m

20-08-1982

15-11-2013

20,345.00

S – 45220

mc  george

F

26-12-1996

12-02-2008

35,789.00

S – 45230

        sam          peter

M

22-11-1994

15-05-2016

28,349.00

D – 45004

           madhuri        Dev

F

13-02-1984

01-09-2008

30,000.00

 

I.             Format the following from Sheet I of DAM Exam Sheet.

1.    Split the column Deptname-EmpID into two columns.

2.    Format the Employee Name column.

3.    Format the Gender column.

4.    Format the date to YYYY/MM/DD”

5.    Find the Number of years of service of service for an employee in the                               organisation as on date.

6.    Insert the currency “$” symbol in the salary column.

7.    Remove the decimal place in the salary column.

8.    If an employee has to retire at the age of 60, when will they retire.

9.    Employees whose experience is greater than 10 years will get a                                            bonus of 10%.  Calculate the bonus paid.

10. How many employees are there in each department and what is their total salary department wise.

II.            Table for 11-15 Questions

Employee ID

First Name

Last Name

Gender (M/F)

Age(Years)

Date of Hiring

(DD/MM/YYYY)

Salary in $

45001

anne          

hardy

F

45

06-01-2010

4,50,000

45001

Ram          

sastry

M

23

01-05-2000

1,25,000

45203

SHYAM

max

M

35

01-08-2005

2,15,000

45932

Riya

sharma

F

29

01-03-2010

2,12,000

45020

Jai

dixit

M

48

08-10-2000

4,65,000

 

 

 

 

 

 

 

45006

Madhuri       

dEv

F

38

 

3,10,000

45078

Somya Varma

varma

F

56

01-10-1990

6,50,000

45039

Raju

beri

M

43

02-08-1999

4,23,000

 

 

 

 

 

 

 

45020

Jai

dixit

M

48

08-10-2000

4,65,000

45038

Kalyani

rao

F

37

03-10-2010

3,12,000

45037

Sam

joseph

M

 

04-02-2006

3,20,000

45059

Poter

Parker

M

39

03-10-2008

2,89,000

45012

Siddu

rao

M

42

15-10-2007

4,12,000

11. Remove blank rows

12. Highlight blank cells and fill with “No Data”

13. Concatenate First Name and Last Name columns

14. Format the names of the concatenated column.

15. List out all the employees whose salary is greater than $3,00,000 and less than $4,00,000 give allowances of 5% and above $4,00,000 give allowances of 10%.  Find the total allowances paid by the company.

 

 

III.         Table for Question No. 16-20

Customer ID

Customer Name

Contact Name

Street Name

City

Postal Code

Country

3124

Alfreds Futterkiste

Maria Anders

Obere Str. 57,

Berlin

12209

Germany

1238

Ana Trujillo helados

Ana Trujillo

avda. de la Constituci¢n 2222

Mexico city

5021

Mexico

4562

Antonio MorenoTaquer¡a

antonio moreno

mataderos 2312

Mexico city

5023

Mexico

678

Around the Horn

thomas hardy

120 Hanover Sq.

new yoork

WA1 1DP

USA

2314

Berglunds snabola

Christina Berglund

Berguvsv„gen 8

Sydney

33-22

Australia

3657

Amit Mishra

 Maria Anders

Obere Str. 57

Sydney

65-332-3

Australia

7890

williami sanuo

Ana Trujillo

Avda. de la Constitucion 2222

Sydney

43433

Australia

56789

Sonio Moreno

Antonio Moreno

120 Jefferson St.,Riverside

new jersy

8075

US

3657

Amit Mishra

Maria Anders

Obere Str. 57

Sydney

65-332-3

Australia

2314

Berglunds snabbkp

Christina Berglund

Berguvsvgen 8

Sydney

33-22

Australia

 

 

16. Using Excel, concatenate the columns Street name and city.

17. Insert "C-" in the left side of the customer Id in customer name column of the above data.

18. Using Excel Remove Extra spaces and format the names of customer name column.

19. From the above table remove the duplicate rows.

20. From the above table remove the customer whose customer ID is not a    4 digit number

 

IV.         Table for Question No. 20-25

Employee

Employee

Gender

Age

Year of

Date of

Salary

ID

Name

M/F

As on

date

Graduation

Hiring

In

Rupees

D45078

Somya Rao

F

50

1975

01-10-1990

6,50,000

S45039

Raju Budda

M

43

2000

02-08-1999

4,23,000

M45020

Jai Raj

M

48

1993

08-10-2000

4,65,000

M45038

Kalyani Kumari

F

37

2004

 

3,12,000

M45037

Sam Joes

M

36

2005

04-02-2006

3,20,000

S45059

Poter Michel

M

39

2004

03-10-2008

2,89,000

F45012

Siddu kommnani

M

42

2000

15-10-2007

4,12,000

F45023

Geeta Chowdari

F

46

1996

12-10-2005

4,34,000

D45078

Lavanya Koppula

F

49

1994

31-10-2004

 

 

Hema Sarvani

F

50

1992

25-10-2000

5,69,000

S45060

Gopal Das

M

54

1998

12-09-2001

6,32,000

F45062

Siya Paul

F

51

 

19-06-2003

5,90,000

M45026

Hari Krishna

M

38

2003

25-04-2003

 

O45029

Priya Dixit

F

 

2005

12-07-2006

3,45,000

A45037

Anu Devara

F

58

1985

12-09-2008

6,95,000

 

 

 

21. From the above data in Excel, Concatenate the Headers.

22. From the above data in Excel, convert the numerals in Year column to text format.

23. From the above table in Excel, highlight the blank spaces and fill it with "Not Available".

24. From the above table in Excel, select only the first name from the Employee name and paste in another column.

25. Create Email Addresses using lower case and underscore in between the names and end with “@gmail.com”.  (For example priya_dixit@gmail.com)

 

V.           Table for 26 to 30 Questions:

Customer Name

Company name

Phone number

Address, City, State, ZIP Code

Amount

Shipment Date

Order Date

Jim van der Mheen

Stokes, Rutherford and Bauch

7282727491

939 clear edge, mesita, wv, 14424

 $   1,00,003

25-05-2016

2016-04-19

Shenita Daven port

Waelchi Inc

2676259210

873 iron third harbor, whelen springs, nm, 37783

      1,83,593

02-08-2016

2016-07-03

Jimmie Mc Clure

Braun, Crooks and Ortiz

8373183928

856 forge overpass, annandale, nm, 08463

      1,59,194

30-10-2016

2016-10-21

Mary Belle Serrano

Schamberger, Yost and Dach

8853887212

515 silver highlands, natalbany, wy, 00462

      1,80,394

20-04-2016

2016-04-01

Vito van Helpen

Mann, Sauer and Sauer

3507306802

221 jagged harbor, franklin borough, ny, 80069

      1,25,979

10-08-2016

2016-07-18

Salvatore Van Egmond

Schmidt-Marks

5308189072

p.o. box 51573, berthold, sd, 16229

      1,11,804

30-08-2016

2016-07-29

Hay Wood Meza

Huels, Schuster and Daugherty

8102106924

p.o. box 42524, matteson village, mn, 55503

      1,08,063

25-02-2016

2016-01-15

Margrett Cowan

Armstrong Group

8661697766

249 old passage, james village, id, 64602

      1,74,882

05-08-2017

2017-07-15

Jerold MC Hooper

Muller, Lakin and Bogan

9291511240

843 old camp, new holland village, wy, 32125

      1,30,140

05-04-2017

2017-03-26

Leandro van der Woerd

Mueller and Sons

67145298l3

956 lazy grove, ouray, mi, 38713

      2,12,181

18-03-2017

2017-01-18

Haywood Huber

Braun, Crooks and Ortiz

7702510897

p.o. box 30184, wolfe, ok, 08774

      1,52,568

20-06-2017

2017-05-31

Particia Veen Hof

Schmidt-Marks

8041074292

897 amber bluff, huntley, in, 29911

      1,52,088

08-08-2017

2017-08-02

Yvone Esparza Brook

Weber, Kuhlman and Hirthe

2099450674

937 indian kennedy lawn, south milwaukee, me, 85635

      1,85,383

13-12-2017

2017-12-05

Yvone Esparza

Weber, Kuhlman and Hirthe

61616985o2

670 lazy cider, glen raven, nc, 19967

      1,39,493

2017-05-30

2017-04-30

Jame Oosthuijzen

Graham, Towne and Monahan

4729853826

370 eighth mews, villano beach, nv, 52255

      1,83,377

2017-09-20

2017-09-07

Filiberto Kues

Schmidt-Marks

8756599072

325 iron bluff heights, walford, vt, 11877

      1,98,796

2017-05-20

2017-05-16

 

26.From the above table, remove the invalid phone number which are not in the proper format of having 10 digits, no characters and the phone numbers which are starting with 9/8/7/6

27.   From the above table, put the phone numbers in US format.

28.     From the above table, split the Address column into Address, City, State and ZIP  code.

29.   From the above table, select only the middle name from customer name.

30.     From the above table, calculate the number of days required for shipment.

 

Power Pivot and Power Query Questions:

 

VI. Power Query link(Order data set 1)

     Power Query link ( Order data set 2)

Use Power Query Editor to answer the following questions:

31. Remove the rows which has improper data.

32.Split the column Customer ID into Customer ID and Customer Name.

33.Remove the currency Symbol and the decimals (Give reasons for removing them) from the column Cookies shipped.

34.Calculate the profits for each of the customer.

35.How many days does it take for the delivery of orders.

36.Load the second data set to the existing data set1.

37.Create Pivot table for the cookies shipped year wise and quarter wise.

38.Create pivot table and graph for the cookies shipped customer wise.

39.Create pivot table to know the top 5 customers.

40.Crate pivot table to know the relationship between the sales and the delivery of the orders.

 

VI.      Power Query and Power Pivot Link (Sales_2018)

Power Query and Power Pivot Link (Sales_ 2019)

 

41.In Power Query Editor concatenate the first two rows.

42.In Power Query Editor Split the column ship mode and container.

43.What is percentage of total shipping amount for each order priority.

44.Find the bottom 3 Shipment Mode and Container by total Unit Sell Price.

45.Sort Customer ID by Unit Sell Price in ascending order.

46.Calculate the number days for shipment and establish a relationship between the number days for shipment and shipment amount.

47.Find the total selling price customer wise?

48.Has Order priority has any influence on the shipping amount.

49.Which shipment mode has more customers?

50.Is order Id determined by discount percent?

https://www.dynamicwebtraining.com.au/blog/quick-ways-to-clean-excel-data

 

Comments

Popular posts from this blog